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INVERSE PROBLEM OF PLANE PLASTICITY THEORY* 

M.Ia. LEONOV and E.B. NISNEVICH 

A method is proposed to determine the plastic deformation according to a law, given 
beyond the elastic limit, for the variation in the state of stress. On the basis of 
the equation obtained, inelastic deformations are calculated for the problems of 
L.A. Galin /l/ and G.P. Cherepanov /2/ on the extension of an infinite plane with a 
circular hole. 

1. Initial representations. Elastic deformation is generated because of a change in 
the interatomic spacing, while inelastic deformation is the result of a change in the order of 
atoms arrangement in the body by slipping over the interatomic planes. In pure form inelastic 
deformation (without elastic) cannot occur in a real solid. Quantitatively, the plastic de- 
formation tensor l?jk(j, k =x, y, I) is defined as the difference between the total deformation 
tensor and its elastic portion. The elastic deformation is here related to Hooke's law with 
stress tensor components. 

It has been shown /3/ that the state of stress due to a given plastic deformation in the 
plane case (on the boundary of the plasticity domain the inelastic deformation is zero) can 
be represented as the stress components due to wedgelike dislocations distributed over the 
plasticity domain with density p, and over the boundary L of the plasticity domain with den- 
sity PL 

where for plane deformation 

and for the plane state of stress 

Here G is the shear modulus, Y is the Poisson's ratio, n is the external normal to the 
line L,and A is the two-dimensional Laplace operator. 

The following results from the above. To find the state of stress originating from the 
plastic deformations given in an arbitrary body, it is necessary to determine the stress due 
to one wedgelike dislocation and to sum them. In the case of a multiconnected body, thestate 
of stress due to wedgelike dislocations arrangedon each contour that increases its connected- 
ness, is independent of their distribution law but 1s determined by their total intensity. 
This results in the concept of the Volterra dislocation. 

Therefore, the state of stress can be found that originates in a bodyforagivenplastic 
deformation. The inverse problem, of determining the plastic deformation by a law of the 
variation in the state of stress given beyond the elastic limit, is considered below. The 
plastic deformation in the body should here be such that the state of stress (evaluated by 
the method elucidated above) due to it and to external forces should agree at each instantwith, 
given stress components. 

2. Auxiliary problem. Let it be required to find structural imperfections (the 
density of wedgelike dislocations) over a known field of stress. To solve this problem, we 
cut a closed rectangular contour in the shape of a frame out of an unloaded body. Thenwe cut 
this frame along some section. If there had been defects within the contour then the section 
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of the frame would have been separated by an angle which would equal the total power of the 
wedgelike dislocations included in the contour under consideration. On the other hand, this 

angle can be found by the elastic deformations of the frame by assuming that they are deter- 
mined because of an ideal experiment for cutting a body into sufficiently fine parts. Then 

the densitv of the wedselike dislocations, expressed in terms of the stress components, will 
have the following form in the plasticity-domain (for the plane state 

(1 + v), and for plane deformation x = 3 - 4v) 

p=- +- A@+ 0,) 

The density of the wedgelike dislocations on the domain boundary equals /3/ 

PL = l-t% 
[ 

a k + SJ 
a- 

8G an 1 

of stress x = (3 - v)/ 

(2.1) 

(2.2) 

The square brackets denote discontinuity of the enclosed quantity on the boundary of 
the slip domain. 

3. Fundamental problem. Itisto determine the plastic deformations in structural im- 
perfections for a given law of stress component variation. 

Giving the history of the origination of the state of stress permits determination of 
the slip line at each instant. Using one of the plasticity theories here, the direction of 
maximum inelastic shear rrn can be found. Then, for a known density of the distributed wedge- 
like dislocations,theexpressions (1.1) and (1.2) can be considered as differential equations 
relatively to the quantity r,,,. Their solution is shown in examples (Sects.4 and 5). 

The question of the maximal plastic shear does not occur in ideal plasticity problems. 
In particular, under the Tresca plasticity condition the shear r,agrees with the line of 
maximal tangential stress action. For such a plasticity condition Galin /l/ for plane defonn- 
ation and Cherepanov /2/ for the plane state of stress found a hole of radiusR under the 
action of forces ql, qz applied at infinity. For these problems approximate values of the 
displacement components have been obtained /4/ by the small parameter method. 

4. Galin's problem. An ellipse whose exterior is mapped conformally on the exterior 
of a unit circle by the function (z and 5 are complex variables, and tr is the yield point) 

(4.1) 

is the boundary between the elastic and plastic domains. 
We find the density of the wedgelike dislocations which, together with the external load, 

cause the state of stress of this elastic-plastic problem in an elastic body, using formulas 
(2.1) and (2.2). 

It can be confirmed that there are no structural imperfections distributed over the 
plasticity domain, i.e., 

p=o (4.2) 

The density of the wedgelike dislocations inserted on the boundary of the plasticity do- 
main equals (the derivative with respect to the normal is evaluated on the boundary of the 
slip domain) 

2tl-9~~ alcl 
PL= c dn (4.3) 

Besides these imperfections, wedgelike dislocations are formed on the outline of the 
circular hole, and are reduced to rings with the angular divergence 

Taking into account that the 
with the polar radius, we obtain 
polar coordinates) 

Or = -4nrT (1 - v)/G (4.4) 

direction of the maximum plastic shear makes the angle n/4 
on the basis of the relationships (1.1) and (4.2) (r,e are 

(4.5) 

The equations of the slip lines e,n have the form 

~=lnrj9,n=lnr-0 (4.6) 



128 

We write the relationship (4.5) in the %, 11 coordinate system 

The equation obtained is of hyperbolic type. Its solution can be represented by the 
Riemann /5/ formula as follows (v is the Riemann function, and ,& is an are of the slip 
domain boundary between two slip lines passing through the point %, n): 

Here the expression (1.2) has been used. 
For equation (4.7) the Riemann function has the form (10 is the zero under Bessel func- 

tion of imaginary argument) 

~(%~rl~%o~so)=;eXP[-~((*I-~o$_%-5a)]zo(~) 

Y= f(% - %o)@l - VOW 

On the basis of the formula for the density of wedgelike dislocations (4.31, we represent 
the integral (4.8) in the form 

(4.9) 

The solution found will be valid if the plastic defonaation grows monotonically at each 
point. Such a process is possible if the slip line has one point of intersection with the 
ellipse (4.1). The constraint on the load relationship 

follows from this condition. 
Evaluating the integral (4.9) for the axisymmetric problem (qe = ql) we abtain 

The displacement components are easily evaluated if the total deformations are known 

which equal the sum of the plastic and elastic deformations, i.e., if plastic deformationshave 
been found, thendeterminationof the shifts reduces just to the evaluation of quadratures. The 
displacement components obtained in this manner for the deformations (4.9) agree with the dis- 
placements determined in /6/. 

5. Cherepanov’s problem. In constrast to plane deformation, in this case the den- 
sity of the wedqelike dislocations distributed over the plasticity domain is not zero and is 
determined by formula (2.11 

TTR 
p= (t + v) cr3 

(5.1) 

The density of the structural imperfections distributed on the boundary of the slipdomain, 
and the angle of divergence of the ring dislocation 

(5.21 

are found analogously to the preceding problem. 



The parameter a is the real root of the cubic equation displayed in the 
On the basis of relationships (1.1) and (5.11, we obtain a differential 

ely to the maximal inelastic shear 

Taking into account that r,,, = 0 on the boundary of the plasticity.domain, we write the 
solution of the last equation in the form 

2 arm 
--z-+ 

air, 2sTR 

r 7= c (1 + v)r3 
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parentheses. 
equation relativ- 

r_(r,e)=~n(f-t)-~(fIn~-6ln~) 
(5.3) 

ro= R 4 fa'S_4aeos21 
e (a' -4) ( 

tge= 
4 (1 - a)sint - a"sin.3t 
4(1+a)cos1+a'cos31 1 

Here r0 is the parametric equation of the slip domain boundary, where the parameter t 
is related to the polar angle 8 by the relationship displayed in parentheses. 

We determine the arbitrary function f(e) from the condition that the density of the wedge- 
like dislocations on the boundary of the plasticity domain, which is expressed in terms of the 
deformation (5.3) by means of formula (1.2), should equal the density (5.2) found. We then 
finally obtain 

r-(rqe)=&$j-[(f-+) [ ,_“,$‘t~,,,, + $3 -Gin +] 

The solution consider@ will be valid while the plasticity domain encloses a circularhole 
and is here broadened monotonically; moreover, there should be O< s<*is. 
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